代码详解:用Pytorch训练快速神经网络的9个技巧 您所在的位置:网站首页 pytorch 训练代码 代码详解:用Pytorch训练快速神经网络的9个技巧

代码详解:用Pytorch训练快速神经网络的9个技巧

#代码详解:用Pytorch训练快速神经网络的9个技巧| 来源: 网络整理| 查看: 265

全文共4857字,预计学习时长10分钟

图片来源:unsplash.com/@dulgier

事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或*GASP(一般活动仿真语言)*训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。

不要让你的神经网络变成这样。(图片来源:Monsters U)

这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利用你的网络。例子中会包括一些Pytorch代码和相关标记,可以在 Pytorch-Lightning训练器中用,以防大家不想自己敲码!

这份指南针对的是谁? 任何用Pytorch研究非琐碎的深度学习模型的人,比如工业研究人员、博士生、学者等等……这些模型可能要花费几天,甚至几周、几个月的时间来训练。

指南(从易到难)

1. 使用DataLoader。

2. DataLoader中的进程数。

3. 批尺寸。

4. 累积梯度。

5. 保留计算图。

6. 转至单GPU。

7. 16位混合精度训练。

8. 转至多GPU(模型复制)。

9. 转至多GPU节点(8+GPUs)。

10. 有关模型加速的思考和技巧

Pytorch-Lightning

文中讨论的各种优化,都可以在名为Pytorch-Lightning(https://github.com/williamFalcon/pytorch-lightning?source=post_page---------------------------) 的Pytorch图书馆中找到。

Lightning是基于Pytorch的一个光包装器,它可以帮助研究人员自动训练模型,但关键的模型部件还是由研究人员完全控制。

参照此篇教程,获得更有力的范例(https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/single_gpu_node_template.py?source=post_page---------------------------)。

Lightning采用最新、最尖端的方法,将犯错的可能性降到最低。

MNIST定义的Lightning模型(https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py?source=post_page---------------------------),可适用于训练器。

 

from pytorch-lightning import Trainermodel = Lightning Module(…)trainer = Trainer()trainer.fit(model)

1. DataLoader

这可能是最容易提速的地方。靠保存h5py或numpy文件来加速数据加载的日子已经一去不复返了。用 Pytorch dataloader (https://pytorch.org/tutorials/beginner/data_loading_tutorial.html?source=post_page---------------------------)加载图像数据非常简单。(关于NLP数据,请参照TorchText:https://torchtext.readthedocs.io/en/latest/datasets.html?source=post_page---------------------------)

 

dataset = MNIST(root=self.hparams.data_root, train=train, download=True) loader = DataLoader (dataset, batch_size=32, shuffle=True) for batch in loader: x, y = batch model.training_step(x, y) ...

在Lightning中,你无需指定一个训练循环,只需定义dataLoaders,训练器便会在 需要时调用它们(https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py?source=post_page---------------------------#L163-L217)。

2. DataLoaders中的进程数

加快速度的第二个秘诀在于允许批量并行加载。所以,你可以一次加载许多批量,而不是一次加载一个。

 

# slowloader = DataLoader(dataset, batch_size=32, shuffle=True) # fast (use 10 workers)loader = DataLoader (dataset, batch_size=32, shuffle=True, num_workers=10)

 

3. 批量大小(Batch size)

在开始下一步优化步骤之前,将批量大小调高到CPU内存或GPU内存允许的最大值。

接下来的部分将着重于减少内存占用,这样就可以继续增加批尺寸。

记住,你很可能需要再次更新学习率。如果将批尺寸增加一倍,最好将学习速度也提高一倍。

4. 累积梯度

 

假如已经最大限度地使用了计算资源,而批尺寸仍然太低(假设为8),那我们则需为梯度下降模拟更大的批尺寸,以供精准估计。

假设想让批尺寸达到128。然后,在执行单个优化器步骤前,将执行16次前向和后向传播(批量大小为8)。

# clear last stepoptimizer.zero_grad() # 16 accumulated gradient stepsscaled_loss = 0for accumulated_step_i in range(16): out = model.forward() loss = some_loss(out,y) loss.backward() scaled_loss += loss.item() # update weights after 8 steps. effective batch = 8*16optimizer.step() # loss is now scaled up by the number of accumulated batchesactual_loss = scaled_loss / 16

而在Lightning中,这些已经自动执行了。只需设置标记:https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/?source=post_page---------------------------#accumulated-gradients

 

trainer = Trainer(accumulate_grad_batches=16)trainer.fit(model)

5. 保留计算图

撑爆内存很简单,只要不释放指向计算图形的指针,比如……为记录日志保存loss。

losses = []...losses.append(loss)print(f'current loss: {torch.mean(losses)'})

上述的问题在于,loss仍然有一个图形副本。在这种情况中,可用.item()来释放它。

 

# badlosses.append(loss)# goodlosses.append(loss.item())

Lightning会特别注意,让其无法保留图形副本 (示例:https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/models/trainer.py?source=post_page---------------------------#L767-L768)

6. 单GPU训练

一旦完成了前面的步骤,就可以进入GPU训练了。GPU的训练将对许多GPU核心上的数学计算进行并行处理。能加速多少取决于使用的GPU类型。个人使用的话,推荐使用2080Ti,公司使用的话可用V100。

刚开始你可能会觉得压力很大,但其实只需做两件事: 1)将你的模型移动到GPU上,2)在用其运行数据时,把数据导至GPU中。

# put model on GPUmodel.cuda(0) # put data on gpu (cuda on a variable returns a cuda copy)x = x.cuda(0) # runs on GPU nowmodel(x)

如果使用Lightning,则不需要对代码做任何操作。只需设置标记(https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/?source=post_page---------------------------#single-gpu):

# ask lightning to use gpu 0 for trainingtrainer = Trainer(gpus=[0])trainer.fit(model)

在GPU进行训练时,要注意限制CPU和GPU之间的传输量。

# expensivex = x.cuda(0)# very expensivex = x.cpu()x = x.cuda(0)

例如,如果耗尽了内存,不要为了省内存,将数据移回CPU。尝试用其他方式优化代码,或者在用这种方法之前先跨GPUs分配代码。

此外还要注意进行强制GPUs同步的操作。例如清除内存缓存。

# really bad idea.Stops all the GPUs until they all catch uptorch.cuda.empty_cache()

但是如果使用Lightning,那么只有在定义Lightning模块时可能会出现这种问题。Lightning特别注意避免此类错误。

7. 16位精度

16位精度可以有效地削减一半的内存占用。大多数模型都是用32位精度数进行训练的。然而最近的研究发现,使用16位精度,模型也可以很好地工作。混合精度指的是,用16位训练一些特定的模型,而权值类的用32位训练。

要想在Pytorch中用16位精度,先从NVIDIA中安装 apex 图书馆 并对你的模型进行这些更改。

# enable 16-bit on the model and the optimizermodel, optimizers = amp. initialize(model, optimizers, opt_level='O2') # when doing .backward, let amp do it so it can scale the losswith amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward()

amp包会处理大部分事情。如果梯度爆炸或趋于零,它甚至会扩大loss。

在Lightning中, 使用16位很简单(https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/?source=post_page---------------------------#16-bit-mixed-precision),不需对你的模型做任何修改,也不用完成上述操作。

trainer = Trainer(amp_level=’O2', use_amp=False)trainer.fit(model)

8. 移至多GPU

现在,事情就变得有意思了。有3种(也许更多?)方式训练多GPU。

分批量训练

A)在每个GPU上复制模型;B)给每个GPU分配一部分批量。

第一种方法叫做分批量训练。这一策略将模型复制到每个GPU上,而每个GPU会分到该批量的一部分。

 

# copy model on each GPU and give a fourth of the batch to eachmodel = DataParallel(model, devices=[0, 1, 2 ,3]) # out has 4 outputs (one for each gpu)out = model(x.cuda(0))

在Lightning中,可以直接指示训练器增加GPU数量,而无需完成上述任何操作。

 

# ask lightning to use 4 GPUs for trainingtrainer = Trainer(gpus=[0, 1, 2, 3])trainer.fit(model)

分模型训练

将模型的不同部分分配给不同的GPU,按顺序分配批量

有时模型可能太大,内存不足以支撑。比如,带有编码器和解码器的Sequence to Sequence模型在生成输出时可能会占用20gb的内存。在这种情况下,我们希望把编码器和解码器放在单独的GPU上。

# each model is sooo big we can't fit both in memoryencoder_rnn.cuda(0)decoder_rnn.cuda(1) # run input through encoder on GPU 0out = encoder_rnn(x.cuda(0)) # run output through decoder on the next GPUout = decoder_rnn(x.cuda(1)) # normally we want to bring all outputs back to GPU 0out = out.cuda(0)

对于这种类型的训练,无需将Lightning训练器分到任何GPU上。与之相反,只要把自己的模块导入正确的GPU的Lightning模块中:

 

class MyModule(LightningModule):def __init__(): self.encoder = RNN(...) self.decoder = RNN(...)def forward(x): # models won't be moved after the first forward because # they are already on the correct GPUs self.encoder.cuda(0) self.decoder.cuda(1) out = self.encoder(x) out = self.decoder(out.cuda(1)) # don't pass GPUs to trainermodel = MyModule()trainer = Trainer()trainer.fit(model)

混合两种训练方法

在上面的例子中,编码器和解码器仍然可以从并行化每个操作中获益。我们现在可以更具创造力了。

 

# change these linesself.encoder = RNN(...)self.decoder = RNN(...) # to these # now each RNN is based on a different gpu setself. encoder = DataParallel(self.encoder, devices=[0, 1, 2, 3])self. decoder = DataParallel(self.encoder, devices=[4, 5, 6, 7]) # in forward...out = self.encoder(x.cuda(0)) # notice inputs on first gpu in devicesout = self.decoder(out.cuda(4)) #


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有